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Abstract.  The paper  presents  a  “horizontal neuro-symbolic  integration”  ap-
proach for artificial general intelligence along with elementary representation-
agnostic cognitive architecture and explores its usability under the experiential
learning framework for  reinforcement  learning problem powered by  “global
feedback”.
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1 Introduction

The current agenda of artificial general intelligence research is focused on neuro-sym-
bolic architectures  (NSA) [1,  2]  with reinforcement  learning (RL) capabilities  [3].
There are studies concentrated on how the graph-based approaches can be combined
with artificial  neural  networks and  deep  learning,  particularly,  deep  reinforcement
learning [4]. The latter involves variations end extensions of learning based on local
feedback [5] such as Q-learning [6], involving incremental feedback or error propaga-
tion across the states of a studied behavioral program. 

In this work we attempt to bridge the gap between symbolic and symbolic ap-
proaches  within  representation-agnostic  cognitive  architecture.  This  architecture  is
considered to be invariant to whether the operational space of an agent possessing it is
represented by unstructured raw discrete data or a structured system of functions de-
scribing the state of an agent’s environment. 

From a practical  standpoint, we anticipate that it might be plausible to build so
called “horizontal neuro-symbolic integration” systems capable to perform both “Sys-
tem 1” (“slow”) and “System 2” (“fast”) thinking [7] – depending on the stage of a
learning process and the explainability requirements for the system. In this work we
suggest something rather different compared to the modern “vertical neuro-symbolic
integration” systems with neural networks and knowledge graphs residing at different
levels of cognitive architecture [8].



At the same time, we are considering the perspective of replacing the so-called “lo-
cal feedback” (and local “error propagation”) [9,10] with the so-called “global feed-
back” known in neuroscience and psychology [11,12,13] to see if it enables reinforce-
ment learning and what are the conditions and circumstances that make it possible.

For the purpose of the above, we will first consider an overall approach to neuro-
symbolic integration; next, describe our view on the global feedback, then draft prin-
cipal architecture of an elementary module of a cognitive system and, finally, experi-
mentally explore the reference implementation of the described architecture, discuss
the results and draw some practical conclusions. 

It worth noticing that the widely used RL term seem too much associated with only
a limited scope of what can be called experiential learning (EL) [14] which involves
any forms of learning, including unsupervised learning based on observing the states
of the environment from an agent’s standpoint, self-supervised learning [15] based on
guidance and feedback provided by an agent to itself relying on different performance
metrics possessed innately or inferred during the life-cycle, semi-supervised learning
involving different forms of guidance given by an external agent being a teacher, and
finally reinforcement learning per se – based on explicit feedback provided by a rein-
forcing instructor or an environment.

Fig. 1. An example of “horizontal neuro-symbolic integration”. A symbolic representation of
knowledge about the properties of a horse is presented on the left, with the semantic knowledge
graph with labeled vertices performing either abstract concepts referring to specific properties

and their values and edges performing as weighted links maintaining the probabilistic predicate
logic structure. The sub-symbolic representation of the same knowledge is on the right, with the
same knowledge stored in a distributed form as parameters connecting artificial neurons across

layers in a deep neural network being an unlabeled weighted graph. 



2 Neuro-symbolic integration

The “horizontal neuro-symbolic integration” framework concept is rendered on Fig.1.
While the same knowledge may be represented in a form on the right or on the left,
different phases of acquisition (learning) and execution (application) of knowledge
may be performed using either of the two representations or both of them concur-
rently. The left (Fig.1) “symbolic” representation corresponds to Kahneman’s  “Sys-
tem 2” of reasonable, explainable [16] and interpretable [17] “slow thinking” mode
while the right “sub-symbolic” one corresponds to “System 1” associative and intu-
itive unexplainable “fast thinking” [7] modality.

The system implementing both of such knowledge representations would be able to
learn acquiring new knowledge and perform applying this knowledge – using any of
the two systems. “System 1” would be capable to learn more slowly but perform
faster and “System 2” would be learning faster but acting more slowly [7]. 

At the same time, there would be possibility to “transfer” knowledge from the “in-
terpretable” representation fast acquired earlier (“System 2”) into an “intuitive” repre-
sentation to be applied fast when needed (“System 1”). In some cases, knowledge ac-
quisition in the “symbolic” form may be inferred in the course of conventional proba-
bilistic reasoning [18] and in some cases it can be obtained by symbolic input ob-
tained from outer  agents  of external  knowledge storage  systems using a symbolic
knowledge representation language such as “Aigents Language” [19].

The other way around, knowledge learned in the course of experiential learning by
“System 1” during the training process could be “explained” being translated into a
reasonable representation of “System 2” for either verification by means of proba-
bilistic reasoning or communication of knowledge to external agents and knowledge
storage systems via a symbolic language.   

Fig. 2. Global feedback and local feedback loops in artificial cognitive architecture (left) and
neuro-cortical architecture (right) with uncertain multi-modal perception and reinforcement.



3 Global feedback versus local feedback

The most of RL works referenced above [6,9,10] are focused on feedback propagation
over a series of states probabilistically associated with eventual reinforcement. The
reinforcing feedback is propagated step by step across the preceding behavioral trajec-
tory which makes the latest steps collect more feedback even if they are irrelevant to
delayed reinforcement. This can be called “local feedback” as it is propagated on a
step-by-step basis so the reward of the next step is locally shared with the previous
step. Also, this makes training longer because of slow incremental propagations of re-
inforcements.    
We  explore  the  alternative  scheme  of  the  “global  feedback”  [11,12,13]  with  full
amount of reward shared evenly with all steps being in the attention focus at the time
of reinforcement. Then the main problem becomes how to figure out the time span of
the attention focus so it captures the complete sequence of steps leading to either rein-
forcement or failure. In the following experiments we were considering an event of
either a positive or a negative stimulus to set a boundary of the attention interval. In
turn, positive and negative stimuli were considered as a source of either positive (rein-
forcement or reward) or negative (punishment) feedback. 

Fig. 3. Cognitive architecture and operational space for experiential learning in an arbitrary op-
erational space represented by domain ontology – an example for a simplified “self-pong”

game. Agent memories and cognitive processes – at the bottom. Sample operational space – at
the top. 

4 Cognitive architecture 

Cognitive architecture of an elementary agent is inspired by the task-driven approach
[18,20] implementing the theory of functional  systems (TFS) of  P.  Anokhin.  It  is



shown on the bottom of Fig.3, where the agent possesses three processes acting upon
four different memories, extending the cognitive model described in our earlier work
[21].  

The four types of memory are: a) “Base Values” or fundamental goals like avoid-
ance of negative stimuli (“Sad”) and searching for positive ones (“Happy”); b) “Mod-
els” keeping probabilistic relationships between different state transitions experienced
by an agent, with every state transition keeping the input environmental state and out-
put action; c) “Evidence Log” of environmental states; d) “Action Log” of actions di-
rected toward the environment.

Three types of processes are: 1) “Predictor” inferring the “Models” based on the
“Evidence  Log” and  “Action  Log” experiences,  2)  “Decider”  intended to make a
choice relying on probabilities obtained based on the experience state and predictions
evaluated by the “Predictor”; 3) “Compressor” which is supposed to keep the amount
of stored memories in a reasonable range eliminating occasional and irrelevant mod-
els and logs to keep consumption of resources under control.

     

Fig. 4. Operational space – “functional”. Domain ontology – at the top. Representation of a se-
quence of states and actions by means of respective predicates – at the bottom.  

An example of an operational space for an agent with such cognitive architecture is
provided for a simplified “self-pong” game at the top of Fig. 3. The goal of a player in
this game is to reflect the ball with the racket. The agent is provided a negative stimu-
lus  (“Sad”)  if  the  ball  hits  the  “floor”.  The  agent  is  given  a  positive  stimulus
(“Happy”) if the ball hits either the racket or the ceiling right after being reflected by



the racket successfully – depending on the game setup. Both stimuli may be consid-
ered as boolean predicates with time t as an argument. In turn, the action space of an
agent is limited to the choice between moving the racket “Left” or “Right” or keeping
it in place (“Stay”), which are other predicates with t as an argument as well. Other
predicates of the environment can be coordinates of the ball (“Xball”, “Yball”) and
the racket (“Yracket”), in case of the “functional” representation discussed further.

While the example above describes the operational space as a specific domain on-
tology including environmental variables (coordinates and stimuli) and agent actions,
the cognitive architecture itself is assumed to be agnostic in respect to particular do-
main ontology as long as the ontology is described by any consistent set of predicates.

5 Operational spaces

An attempt has been made to evaluate possibility of experiential learning for the same
physical problem applied to different operational spaces and corresponding domain
ontologies. For this purpose, we have represented the above-described “self-pong”
game using two completely different representations - “functional” and “discrete”.

In the first case, illustrated on Fig. 4, we consider a “functional” operational space
where behaviors of the ball and the racket are expected to be known and represented
by distinct functions for different coordinates of the two. That could be a typical case
for using a symbolic probabilistic reasoning system that operates conventional predi-
cates describing the properties of identified concepts and objects and makes predic-
tions on that basis.

Fig. 5. Operational space – “discrete”. Domain ontology – at the top. Representation of se-
quence of states and actions by means of respective predicates – at the bottom.  



In the second case, illustrated on Fig. 5, we consider a “discrete” operational space
where functional behaviors of the ball and the racket are expected to be unknown so
everything is represented by “pixels” of a virtual display where any pixel could be
corresponding to either the ball or the racket. That could be a typical case for using a
neural network architecture with input from a raster display like Atari Breakout RL
test from Open AI Gym framework resembling the “self-pong” discussed here [6]. 

6 Learning model

Three different learning models were explored during the following experiments.  
First, “Sequential” - “symbolic” matching of the sequences of experienced states

leading to positive or negative feedback since the last known feedback event. The
model is represented by a set of successful sequences of states and actions ended up
with either positive or negative feedback. Making a decision, the currently perceived
sequence in the evidence log is used to find the nearest successful sequence in the
model memory and apply it executing the corresponding action, or a random action is
made if no match is found. The extended version of it called “SequentialAvoidance”
is different so when no successful sequence is found and a random choice is being
made, the unsuccessful sequences ended up with a negative feedback are discarded.
Both versions may be extended with an option to make “fuzzy matching” so if no ex-
act match for a successful sequence is found, the most similar one in the model mem-
ory is considered, based on the specified threshold in the range 0.0-1.0.  

Second, “State-Action” model - the “sub-symbolic” one - was employed as a three-
layer network connecting states to actions, with the input layer corresponding to the
values of input predicates and a hidden layer representing compound states. The state-
to-action connection weights were updated on every positive feedback event with pos-
itive correction. Optionally, if configured so, the weights could be updated also in
case of any negative feedback with negative correction. Based on the “global feed-
back” principle, the state-action weights in a network were updated for every state
and action pairs contained in the scope of the attention focus.  The attention focus
scope was being accumulated with every new state transition and reset upon any feed-
back arrival. When a decision was necessary, this model was operating in either a) the
“non-fuzzy” mode when an action was selected only in case if the current state was
perfectly predicting an action or b) the “fuzzy” mode when an action was selected
only in case if it was predicted with certainty above the specified threshold in the
range 0.0-1.0. 
  Third, the “Change-Action” model was a variant of the “State-Action” model where
each state in a model was actually a “state transition” or a change between the previ -
ous and the current state, so the actions were associated not with states per se but with
state transitions including the previous state and the current state. 



7 Experimental results

All three learning models were applied to a simplified version of the Atari Breakout
game [6] called “self-pong” as described above. The results are presented on Fig.6.
The experiments were run for the same agent employing the same learning models
with the inputs consisting of predicates representing environmental states in either a
“functional” or a “discrete” operational space accordingly to the respective domain
ontologies.

Fig. 6. Experimental results with columns: Environment: a “functional” or a “discrete” opera-
tional space and the respective domain ontology; Player Algorithm: a learning model, with 0.5
indicating fuzziness threshold. Numbers indicate the success rates (%) during the training pe-
riod till the Agent is capable of playing without failures, so they correspond to the speed of

learning. The “Avg” column indicates the average success rate across different game field sizes
(2X4, 4X6, 6X8, 8X10) for each of the kinds of the feedback (“immediate” or “delayed”).

All models were explored with different sizes of the game field (2X4, 4X6, 6X8,
8X10) under the conditions of experiencing negative and positive feedbacks. In the
simplest  case,  the  “Immediate  feedback”  was  assumed  so  the  positive  stimulus
(“Happy”) was directed to the Agent by the environment at the point when a racket is
successfully meeting the ball. In a more complex case of “Delayed feedback”, the
positive feedback was communicated only upon the ball hitting the ceiling being suc-
cessfully reflected by a racket earlier. 

Evaluation of the learning process success has been made based on success rate in
percent during the training phase. The success rate was identified as the total number
of positive feedbacks denominated by the sum of all positive and negative feedbacks.
The training phase duration was selected as a number of epochs spent till an agent can
play totally avoiding perception of negative feedback.  The training phase duration
was adjusted to be the same across all the learning models (“Player Algorithm” on
Fig.3) for specific size of the game field and sort of feedback (immediate or delayed).



The code implementing the cognitive architecture, the models, the game environ-
ment and all of the experiments may be found on GitHub: https://github.com/aigents/
aigents-java/tree/master/src/main/java/net/webstructor/agi . 

A video featuring the process  of learning can be watched on YouTube:  https://
www.youtube.com/watch?v=2LPLhJKh95g .

For all or the experimental conditions discussed above, the Agent was able to learn
the game without failures, eventually. The presented approach has turned out to be
practical in terms of shortening the learning times and implementing the “one-shot”
learning concept. As it would be expected, expanding the game field and replacing
immediate  feedback  with  delayed  feedback  increased  the  learning  times  and  de-
creased the success rates. The following conclusions were made.

1) Both “Functional” and “Discrete” representations of the environment are close
to be equivalent from the accuracy (the learning speed on epochs) perspective.

2)  Functional  representation  is much better  from the run-time performance (re-
sponse time and energy saving) perspective.

3) Both avoidance of negative feedback and fuzzy matching of experiences  are
helpful for increasing accuracy and learning speed.

4) Delayed reward decreases learning speed to the extent of ~10-15%.
5) Replacing explicit  “symbolic” memories of successive behaviors with global

feedback on combinations of “sub-symbolic” state-action contexts effects in: a) a dra-
matic increase in run-time performance, b) a minor decrease in learning speed.

6) Negative "global feedback" significantly worsens accuracy;  learning may get
impossible in some cases.

Still, the delayed reward problem is not solved in full, so an increase of the game
field along with further delay of either positive or negative reinforcement was making
it impossible to get reasonable learning results in the limited scope of this research.
This is assumed to take place due to the inability to bound attention focus clearly so
occasional positive feedbacks were allocated to multiple random state-action transi-
tions loosely relevant to the eventual sparse feedback.

8 Conclusion

We  have  evaluated  both  “interpretable”  functional  representation  and  “non-inter-
pretable” discrete representation of operational environment. We have done it using
both  “interpretable”  symbolic  representation  and  “non-interpretable”  sub-symbolic
versions of behavioral processes and their underlying models. Based on the study, we
conclude  that  interpretable  “one-shot”  reinforcement  learning  is  achievable  to  the
same extent in all explored configurations and can be successfully done in both “inter-
pretable” space and “non-interpretable” one. It has been found that acting within an
“explainable” operational  space saves memory and computing resources  due to its
more “structured” compact functional representation.

Converting a “non-explainable” discrete space to an “explainable” functional one,
remains a challenge, however,  which can potentially be solved with hybrid neuro-
symbolic architectures. For this purpose, further studies on both “vertical” and “hori-
zontal” neuro-symbolic integration architectures are necessary.

https://www.youtube.com/watch?v=2LPLhJKh95g
https://www.youtube.com/watch?v=2LPLhJKh95g
https://github.com/aigents/aigents-java/tree/master/src/main/java/net/webstructor/agi
https://github.com/aigents/aigents-java/tree/master/src/main/java/net/webstructor/agi
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