On Cognitive Architectures for Interpretable Strong/General Al

Anton Kolonin

akolonin@aigents.com

Facebook: akolonin

Telegram: akolonin

https://facebook.com/groups/agirussia https://t.me/agirussia

Definition of General Intelligence

Importance of Interpretability

Consciousness – Ontological Modeling

Neuro-Symbolic Architectures

Simulation Results and Conclusions

General Intelligence:

Reaching complex goals in different complex environments, using limited resources and minimizing risks

(Ben Goertzel + Pei Wang + Shane Legg + Marcus Hutter)

Minimally viable natural system capable to satisfy the requirement?

Complex nervous system

Simple nervous system

Single cell organism

Interpretability vs. Explainability

Can we trust to what we do not understand? Can we know what has been have learned? Can we tell them what we need exactly?

Consciousness:

Ability to build models of the environment based on the past to predict the future scenarios and act "consciously" towards the desired ones

Acting consciously:

Agent being able to execute the sequence of behavioral acts to itself by means of a language (system of predicates within an ontology)

https://www.youtube.com/watch?v=2LPLhJKh95g

https://github.com/aigents/aigents-java/tree/master/src/main/java/net/webstructor/agi

Ontology and Grammar ("Functional")

Ontology and Grammar ("Discrete") predicate argument Pixel Нарру Move Boolean Number True False) Horizontal statement := predicate(argument) Column Row Right Left Center Pixel(1,0) Pixel(0,2)Pixel(3,4)Pixel(0,4)Pixel(4,1) Pixel(4,2)Pixel(4,4)Pixel(4,3)

=>

Happy(False)

Move(Left)

Happy(False)

Move(Right)

=>

Happy(False)

Move(Right)

=>

Happy(True)

Move(Left)

=>

Hybrid Neuro-Symbolic Cognitive Architectures "Vertical" Neuro-Symbolic Integration

Society of Mind – Marvin Minsky Thinking, Fast and Slow – Daniel Kahneman

https://towardsdatascience.com/explainable-ai-vs-explaining-ai-part-1-d39ea5053347

Bridging the Symbolic-Subsymbolic gap for "explainable Al" and "transfer learning" - "Horizontal" Neuro-Symbolic Integration

Imaginable AGI Architectures

"Vertical" Neuro-Symbolic Integration

Society of Mind – Marvin Minsky Thinking, Fast and Slow – Daniel Kahneman

https://towardsdatascience.com/explainable-ai-vs-explaining-ai-part-1-d39ea5053347

"Horizontal" Neuro-Sy	mbolic Integration
(Hooves AND Tail) AND ((White and Black) OR Brown) => Horse	Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ

	Votes	<u>AGI</u>	AGIRussia (FB)	AGIRussia (TG)
Many deep networks (subsymbolic)	1.7	1	1	3
Non-boolean logic on graphs/predicates (symbolic)*	5.3	5	9	2
"Vertical" neuro-symbolic integration	1.3	2	1	1
"Horizontal" neuro-symbolic integration	2.3	2	2	3
"Heterarchical static" neuro-symbolic integration	0.3	0	0	1
"Heterarchical dynamic" neuro-symbolic integration**	4.7	7	4	3
Non-linear (symbolic?) dynamic (R.Freeman)	0.3	1	0	0
Some better idea, can exlplain	2.0	0	1	5
Some better idea, top secret	1.7	2	1	2
No idea at all / Something unimaginable yet	2.7	4	0	4
* Evidence-based reasoning (M.Ryabchevsky)				
** "Building Minds with Patterns" (M.Miller)				
** Architure-agnostic (A.Kabanov)				

https://docs.google.com/spreadsheets/d/1Ilm3hu9aewpQc-Mjl8xChjkKXr21gnh0aQ74EnhygX4/

An Agent of AGI Cognitive Architecture based on TFS and Environmental Ontology

Architecture: Multi-layer

 $16 \times 16 = 256 \text{ pixels}$

23K characters

370K words

∞ sentences

∞ sentences

26 characters

170K words

 $16 \times 16 = 256 \text{ pixels}$

Architecture: Local/Global Feedback

http://www.acad.bg/ebook/ml/Society%20of%20Mind.pdf ("Global and Local Reward")

An Agent of AGI Cognitive Architecture learning single-player "ping-pong" game

https://arxiv.org/abs/1807.02072

https://github.com/aigents/aigents-java/blob/master/src/main/java/net/webstructor/util/AgiTester.java Copyright © 2021 Anton Kolonin, Aigents®

Learning single-player "ping-pong" game with global feedback for successive behaviors

		Immediate feedback					Dela	Delayed feedback			
Environment	Player Algorithm	2X4	4X6	6X8	8X10	Avg	2X4	4X6	6X8	8X10	Avg
Functional	Sequential	89	88	88	92	89	70	73	72	85	75
Functional	SequentialA(voidance)	92	90	90	93	91	67	73	81	85	77
Functional	SequentialA 0.5	<u>93</u>	<u>93</u>	<u>93</u>	93	93	80	83	81	89	83
Functional	State-Action	94	88	91	94	92	64	71	79	80	74
Functional	State-Action 0.5	93	88	87	93	90	64	68	75	83	73
Functional	Change-Action	91	86	89	92	90	64	73	76	79	73
Functional	Change-Action 0.5	93	90	90	93	92	63	69	80	84	74
Discrete	Sequential	89	88	88	92	89	70	73	72	85	75
Discrete	SequentialA(voidance)	92	90	90	93	91	67	73	81	85	77
Discrete	SequentialA 0.5	93	91	88	92	91	70	76	80	83	77
Discrete	State-Action	94	88	91	94	92	64	71	79	80	74
Discrete	Change-Action	91	86	89	92	90	64	73	76	79	73

https://www.youtube.com/watch?v=2LPLhJKh95g

https://github.com/aigents/aigents-java/tree/master/src/main/java/net/webstructor/agi

Global feedback for successive behaviors - brief preliminary conclusions

- 1) Both Functional and Discrete representations of the environment are close to be **equivalent** from **accuracy** (learning speed) perspective
- 2) Functional representation is much better from the run-time performance (response time and energy saving) perspective
- 3) Both avoidance of negative feedback and fuzzy matching of experiences help are improving accuracy and learning speed
- 4) **Delayed reward decreases accuracy** to extent of ~10-15%
- 5) Replacing explicit memories of successive behaviors with **global feedback on combinations of state-action and change-action** contexts: a) **increases performance** dramatically, b) **decreases accuracy** a bit.
- 6) **Negative "global feedback"** makes accuracy significantly **worse**, learning may get impossible in some cases

https://www.youtube.com/watch?v=2LPLhJKh95g https://github.com/aigents/aigents-java/tree/master/src/main/java/net/webstructor/agi

Thank you and welcome!

Anton Kolonin

akolonin@aigents.com

Facebook: akolonin

Telegram: akolonin

https://facebook.com/groups/agirussia https://t.me/agirussia

