Interpretable Natural Language Segmentation

Based on Link Grammar

Vignav Ramesh Anton Kolonin
SingularityNET, Saratoga H.S. Novosibirsk State University
Saratoga, CA, USA Novosibirsk, Russia

November 15, 2020

November 15, 2020 1/27

» Introduction
® Natural Language Segmentation
® Sources of Unsegmented Text
® Motivations
® Link Grammar
» Methodology
® Loader
® Segment
» Results
» Conclusion
® Applications

® Future Work

November 15, 2020 2/27

Introduction

November 15, 2020

Natural Language Segmentation

» Process of dividing written text into meaningful units
» Focus on the sub-problem of sentence segmentation

® Dividing a string of natural language (NL) text into its component
sentences that can then be used to build a parse tree

® Proposed architecture solely relies on grammatical relationships
between tokens

» Generalizes to languages other than English or Russian

November 15, 2020 4 /27

Sources of Unsegmented Text

1. Text output from speech-to-text (STT) recognition engines

® STT engines transcribe audio content and return sequences of tokens
without delimeters

® Often used to preprocess the inputs of voice-activated question
answering or chatbot pipelines (among various other scenarios
involving the transcription of audio without recorded punctuation)
2. Crawled web pages

® Returns raw HTML and CSS output that often does not contain
proper punctuation

® HTML and CSS tags are neither accurate nor consistent sentence
boundaries

November 15, 2020 5/27

November 15, 2020

Interpretable Natural Language Processing

» Application of the XAl concept to NLP

» Allows for the learning of NL material, comprehension of bodies of
text, and generation of textual material via logical and transparent
methods that rely on interpretable models of formal grammars

» Mitigates blind spots in corpora, allows model errors to be located

076%-96% Software
matches Human

m 1-8% Software performs
better than Human

0 1-8% Human typos in
training corpus

01-8% Lack of data in
training corpus

m 1-8% Software lacks
Human-lewel intelligence

http://webstructor.net/papers/Kolonin-HP-ACA-IC-text.pdf

November 15, 2020 7/21

Question Answering

Audio receptor }—)‘ STT Engine

Segmentation of question
(input query) into

component sentences

Our work

Question Answering

Natural Language Comprehension (NLC)

based on formal
grammar (Link
Grammar)

Parsing the question

—

Performing semantic
interpretation (extract
concept represented
by query and determine
relationships between
parts of the query

Natural Language Generation (NLG)

Semantic query
execution (determining
answer to query based

on relationships from
the NLC step

Construct grammatically
valid sentences from the
words associated with the
semantic relationships
derived during query
execution

November 15,

Question Answering (cont.)

» Parsing the input query: separate the token sequence that
represents the question into component sentences
» Semantic query execution: Segment documents matched
with input query into component sentences
® Most relevant subset passed on to NLG component of

pipeline

November 15, 2020

9/27

» Each rule describes a list of words corresponding to that rule and a
set of defining disjuncts

» Disjuncts correspond to sets of typed connectors that define the
valid use of a given word

> A sentence refers to a set of tokens that can be connected by
matching up connectors between certain pairs of tokens

» Two directionally opposite connectors of the same type form a link
in a parsed sentence

» The Link Grammar database contains dictionaries across more than
10 languages

® English database contains approximately 1,430 distinct word clusters
and 86,863 word forms

November 15, 2020 10 / 27

Link Grammar (cont.)

a the: D+;
cat snake: D- & (S+ or O-);
chased: S— & O+;

2ol
LT
[¢ {] [¢ 4]
a cat chased
the snake

November 15, 2020 11 /27

Why Link Grammar?

» Besides Link Grammar, other grammar rule dictionaries and APls
exist, such as spaCy and Universal Dependencies

» spaCy and UD rely on or are structured as a dependency grammar

® Requires a head-dependent relationship, i.e. links must be
directional; the English Link Grammar database does not require
links to indicate direction, and thus can be applied to a greater
variety of sentential forms

» No grammatical knowledge hardcoded into software programs,
allowing the Link Grammar database to continually be updated and
enhanced via any manual or automated input (such as a ULL
system) without having to modify the client code

® Qur proposed Loader architecture creates extensive value in
providing the first native Java support for Link Grammar

® Human-readable and editable nature of Link Grammar allows our
grammar induction algorithm to better serve as an XAl when
integrated into the rest of our NLS architecture

November 15, 2020 12 /27

Methodology

November 15, 2020 13 /27

Overall Architecture

Loading and Parsing

Segmentation

Tuna is a fish.
Link Grammar | tuna is a fish an eagle is a bird
Dictionary file
l An eagle is a bird.
Input Input
Loader ——> Parser —> Segment
Equivalent |
Tuna is a fish.
Py = Al le i ird.
Dictionary n eagle is a bird
>#---0st--+
-+ +Ds*¥ct
| Input
LEFT-WALL tuna.n-u is.v a fish.s
-
o= d-- 4---0st--+
| +DS**V4-Ss*s-+ +DS**CH
|

LEFT-WALL an

Applications
(Question Answering Pipeline)

Question Answering
Natural Language Comprehension (NLC)

Performing semantic
Parsing the question

interpretation (extracting
(input query) based on _y, concept represented
formal grammar by query and determining
> (Link Grammar) relationships between
parts of the query)

l Natural Language Generation (NLG)

" Construct grammatically
Semantic query ;
execution (determining valid sentences from the

|
eagle.n is.v a bird.n

answer to query based m———3p words associated with the
el e semantic relationships
the NLC step) derived during query
execution

November 15 14 /27

Loader

» Loads and stores the Link Grammar database in various classes for
future usage

» Currently, the Loader architecture only supports the English
language and does not handle more complex morphological
structures, including those needed to support languages such as
Russian that require extensive morphology usage

Dictionary
{ *** Word Word Word Word Word * * '}
Rule
{ * * * Disjunct Disjunct Disjund‘ Disjunct Disjunct * * '}

{- - comeor comector comector Comecor + - - }

November 15, 2020 15 / 27

Loader (cont.)

Algorithm 1: MAKEDICT
Tnput : An array lincs of all lines in the Link Grammar Database
Output: An array [dict, hyphenated) of Dictionary objects, one for common words and
one for common phrases with words separated by underscores

> MAKEDICT utilizes the e it and et
. . . Initialize macros, which maps single links to the large connector expressions they define
information in array of e —
i b Iphenatd prase then
lines obtained from the A e
Link Grammar database g
end
to Create an array for line in lines do
of Dictionary objects et g ok e, rom it eniion,

Add (macro, rule) to macros

else
® Extracts a Link Grammar e e vt h ik of words i contins
Replace all instances of macros in the rule rule specified in the following lines
ru |e fro m eac h e I ement of the Link Grammar database with their expanded definitions as contained in
of lines, replacing each Store e in s
. . ASSIG!
macro in the rule with
else
T H Split the word, w, from its definition, rule
Its expa nd ed expreSSIon P[’n:e‘x‘\ rule and \:m:‘ |(|m a 'l’lullt object r
a nd aSSIgn | ng the mod |f|ed R::':::‘:“:‘III ll::l,:\(r(\:‘,c;jﬂ macros in rule with their expanded definitions as
. . ASSIGN(w, 1)
rule to the word it defines K
e
end

return [dict, hyphenated)

November 15, 2 16 / 27

Segment

» Computes a segmentation for
a string of text

1. Extracts the tokens (words
and punctuation) from that
text via
PROCESSSENTENCES

2. Clusters those tokens into
valid sentences as per the
SEGMENT function

> SEGMENT loops through
tokens and determines if
certain subsets of tokens can
form valid sentences via
ISVALID and CHECK

Algorithm 2: SEGMENT

Tnput : An array (okers of words and commas extracted from the input text by

by segmenting tokens into grammatically and

morphologically ys of tokens

Start a counter i, representing the index of the current token in fokens
Initialize an empty lst ref, which will eventually contain the sentences that SEGMENT
will return

while idr < lengih(tokens) do
for i in [idr, length(tokens)] do
Create array arr containing the subset of tokens from indices idx to i
if ISVALID(arr) and CHECK (tokens(i + 1. tokens[i +2)) then
threshold = n (default value of 2)
Add tokens|i + 1], tokens|i +2] ... tokens[i + n] to arr
if ISVALID(arr) and CHECK (tokens[i + n + 1], tokens[i + n +2)) then
nce from arr, ie. create a string with the tokens in arr
and add appropriate punctuation

ide «i+n+1

else
Construct a sentence from the original value of arr
Add the sentence to ret

ide i+ 1

November 15,

Segment (cont.)

> ISVALID:

® Determines if arr can form
a valid sentence via Link
Grammar rules by ensuring
that every pair of
consecutive words in arr
can be connected by links
in the Dictionary

® Uses the CONNECTS
function, which returns a
boolean value indicating
whether its two parameters,
the tokens left and right,
can be linked together

‘Algorithm 3: CONNECTS

Input : A pair of strings /¢ /1 and right. representing the two words (o polentially be
connected

Output: An boolean value indicating whether [c ff and right can be connected via valid
Link Grammar rules

Obtain le ¢ List, the list of rules corresponding with ¢ /1 (i.¢. the rule when left is a verb,
the rule when /et is a gerund, etc.), from the global Dictionary variables dict and
hyphenated

Obtain right List in a similar manner

for le [t Rule in le ft List do
for right Rule in rightList do
Split le ft Rule and right Rule into lists of Disjuncts Id and rd
for L inld do
for 7 in rd do
Replace all instances of ‘" in [with *+" and vice versa
if [= r then
return true

continue
ene

end
return false

November 15,

Segment (cont.)

> CHECK:
® Determines if the first two tokens following arr satisfy initial checks
of the planarity and connectivity metarules (e.g. first two tokens
after arr can form links to the right and left, respectively)
> An example segmentation query is as follows: SEGMENT(“tuna is a fish
eagle is a bird dog is a mammal”) = [“Tuna is a fish.”, “Eagle is a bird.”,
“Dog is a mammal.”]

November 15, 2020 19 / 27

November 15, 2020 20 / 27

Evaluation

TABLE I “SMALL WORLD” CORPUS NLS RESULTS TABLE IL. GUTENBERG CORPUS NLS RESULTS
Metric Result Metric Result

Ground Truth (POC-English Corpus) Ground Truth (Gutenberg Corpus)
Total number of sentences 88 Total number of sentences 10
Average sentence length 5.51136 Average sentence length 132
NLS Algorithm Results NLS Algorithm Results
Total number of sentences 87 Total number of sentences 11
Average sentence length 5.57471 Average sentence length 132
Overall Statistics Overall Statistics
Runtime 57 sec Runtime 14 sec
Number of sentences matching exactly 78 Number of sentences matching exactly 7
Numl_:er of sentence boundaries accurately 85/87 Num!:er of sentence boundaries accurately 779
identified identified
Accuracy of boundary identification 0.97701 Accuracy of boundary identification 0.77778

Comparison with Prior Work

» Compared our NLS architecture to three widely used open-source sentence
segmentation frameworks: Syntok, PragmaticNet, and DeepSegment

» Syntok and PragmaticNet
® Syntok computes segmentations by recognizing “terminal markers”
® PragmaticNet is an unsupervised, opinionated, and conservative
segmentation framework that segments text into sentences based on
punctuation, quotations, and parentheticals
® Both Syntok and PragmaticNet identified zero boundaries in the text
from both the POC-English and Gutenberg corpora

» DeepSegment
® Utilizes bidirectional long short-term memory networks (BiLSTMs) in
a CRF based supervised segmentation model aimed at segmenting
unpunctuated bodies of text into sentences
® |dentified only 1 segmentation boundary in the POC-English corpus
and 2 boundaries in the Gutenberg corpus (all of which were
accurate), yielding accuracies of 1.15% and 22.2%

November 15, 2020

Grammatical Ambiguity

» Situations in which the same word may take on different parts of speech
(such as the word “saw” in its verb and noun forms)
» ‘“dad has a hammer mom has a hammer”
® Appropriate to segment this text into the two sentences “Dad has a
hammer” and “Mom has a hammer” because the words “hammer”
and “Mom"” cannot be connected
® Only true for the noun form of “hammer”; the verb form of
“hammer” can technically be linked to the object “Mom”

> Solution: Semantic (word sense) disambiguation
® Determines which “sense” or definition of a word is activated by that
word's use in a particular context
® Current unsupervised semantic disambiguation methods include
dictionary-based algorithms that utilize knowledge encoded in lexical
resources to learn the senses of words

November 15, 2020 23 /27

Conclusion

November 15, 2020 24 /27

Applications

1. Semantic query execution component of the question answering pipeline
® Aigents Social Media Intelligence Platform
® Currently only handles oversimplified “pidgin” English
® Can enable Aigents to support question answering from spoken audio
input transcribed by STT as well as extract information from crawled
web pages to answer such questions
2. Text simplification

® Enhance a corpus of human-readable text as to simplify the grammar
and structure of the text while maintaining the original meaning

® “Mom saw Dad, who saw Mom sawing.” — [“Mom saw Dad,”
“Dad saw Mom,” “Mom was sawing.”]

® Improve the quality of corpora that would otherwise contain
vocabulary and complex sentence constructions not easily processed
via computational means

3. Any NLP algorithms that operate at the sentential level

® Automatic summarization, entity extraction, sentiment identification

November 15, 2020 25 /27

Future Work

1. Implement grammatical and semantic disambiguation

2. Extend the algorithm's segmentation capabilities to languages other than
English

November 15, 2020 26 /27

Thank you!

» Code & Data:
https://github.com /aigents/aigents-java-
nlp

» Contact: rvignav@gmail.com

View Code

November 15, 2020 27 /27

