

Interpretable Natural Language Segmentation
Based on Link Grammar

Vignav Ramesh
Research

SingularityNET Foundation
Saratoga, CA, USA
rvignav@gmail.com

Anton Kolonin
Research

Novosibirsk State University
Novosibirsk, Russia

akolonin@gmail.com

Abstract— Natural language segmentation (NLS), or text
segmentation, refers to the process of dividing written text into
meaningful units. Sentence segmentation, a subfield of text
segmentation, is the problem of dividing a string of natural
language text into its component sentences. Current methods of
sentence segmentation are often either hardcoded—they require
manual implementation of fixed grammar and segmentation
rules—or require extensive training on labeled corpora and are
not explainable—they are “black box” algorithms that cannot
be understood by humans. In this paper, we present a novel
explainable sentence segmentation method capable of
separating bodies of text into grammatically valid sentences
solely based on the grammatical relationships between
individual words or tokens. The proposed NLS architecture can
both automate the input query parsing and semantic query
execution components of voice-activated question answering
and information retrieval systems as well as enable automatic
summarization, entity extraction, sentiment identification, and
a variety of other natural language processing (NLP) algorithms
that operate at the sentential level.

Keywords—explainable artificial intelligence, natural
language segmentation, natural language processing, question
answering, formal grammar

I. INTRODUCTION

A. Natural Language Segmentation
Natural language segmentation (NLS), otherwise known

as text segmentation, refers to the process of dividing written
text into meaningful units, such as words, sentences, topics,
morphemes, or paragraphs. Text segmentation encompasses a
variety of problems, such as word segmentation, intent
segmentation, topic segmentation, and more; our work is
concerned with sentence segmentation.

Sentence segmentation is the problem of dividing a string
of natural language text into its component sentences. In this
paper, we refer to sentence segmentation specifically in the
context of separating bodies of text into grammatically valid
sentences solely based on the semantic and morphological
relationships between individual words, i.e. we do not use
punctuation, capitalization, or other indicators of the
beginnings or endings of sentences. Our approach is thus
generalizable to various languages other than English, since
not all written languages contain punctuation characters useful
for approximating sentence boundaries.

B. Sources of Unsegmented Text
There are two primary sources of unsegmented text on

which our proposed NLS algorithm can operate: the text
output from speech-to-text (STT) recognition engines, which
are often used to preprocess the inputs of question answering
or chatbot pipelines, and crawled web pages. STT engines
transcribe audio content and return sequences of tokens,

excluding delimiters. Thus, our NLS architecture can be used
to accurately segment the transcribed output into sentences.
Similarly, web scraping, or webpage crawling, returns raw
HTML and CSS output; the returned content often does not
contain proper punctuation, and HTML or CSS tags are
usually neither accurate nor consistent sentence boundary
identifiers. Here, our NLS architecture can be used to segment
crawled content without requiring the presence of delimiters.

C. Motivations
1) Interpretable Natural Language Processing

 Explainable AI (XAI) refers to artificial intelligence (AI)
methods whereby both the AI model and its results can be
reasonably understood by humans. It contrasts with the idea of
“black box” algorithms where the AI model and its outcome
cannot be understood even by the developer. Interpretable
natural language processing (INLP) is an application of the
XAI concept to natural language processing (NLP); INLP
allows for the learning of natural language (NL) material,
comprehension of bodies of text, and generation of textual
material via logical and transparent methods that rely on
interpretable models of formal grammars such as Link
Grammar [1]. Our NLS architecture is expected to serve as an
INLP method allowing for the interpretable segmentation of
large bodies of text into grammatically valid sentences. Our
work provides both explainable results as well as an
interpretable model for sentence segmentation, since we
utilize Link Grammar which is an explainable formal
grammar.

2) Unsupervised Language Learning
Deep neural networks (DNNs) and other existing methods

of grammar learning often rely on substantial supervised
training on large labeled corpora. However, humans can easily
and quickly acquire explainable rules of sentence
comprehension using grammar rules and conversational
patterns and clearly understand semantic word categories.
This gives rise to the idea of unsupervised language learning
(ULL), which allows for the acquisition of grammar from
unlabeled text corpora computationally and unsupervisedly. In
ULL systems, an example being OpenCog’s unsupervised
grammar induction platform, the learned knowledge is stored
in a human-readable representation [2].

There exist five primary components that comprise the
ULL pipeline. First is the text pre-cleaner, which is
responsible for preprocessing corpora with configurable
cleanup and normalization options. The cleaned corpora are
then passed to the sense pre-disambiguator, which determines
the “senses” or meanings corresponding with each token and
thereby performs word disambiguation. The text parser then
parses the sentences of the corpora into tokens; afterwards, a
grammar learner categorizes words and assigns rules to each
word based on these parses. Finally, an evaluator measures the

quality of the inferred grammar. The ULL’s final output is a
model of the human language; one such model is the Link
Grammar database itself, which serves as the formal grammar
utilized by our NLS architecture [3]. If not obtained from a
ULL system, transparent grammatical models of any NL must
be created manually by computational linguists and
periodically maintained as the language develops over time.

3) Question Answering
Question answering, a subfield of information retrieval, is

the problem of automatically answering questions posed by
humans in the form of NL material via computational means.
Within an explainable question answering pipeline, there exist
two primary components: natural language comprehension
(NLC), and natural language generation (NLG). NLC requires
first parsing the question, or input query, using a knowledge
base structured as a formal grammar, and then performing
semantic interpretation (learning semantic relationships
between tokens of the parsed query found in the previous
step). In the context of this paper, we focus on voice-activated
question answering pipelines, where the input query is
captured as an audio recording and transcribed via an STT
engine. The NLG component then involves semantic query
execution (deriving the answer to the query using the
relationships extracted during NLC) and sentence construction
(building grammatically valid sentences from the words and
relationships determined during query execution).

Our work is concerned with both parsing the question as
well as semantic query execution. While parsing the input
query, our NLS architecture can first separate the token
sequence that represents the question into its component
sentences, which can then be used to build a parse tree that is
passed on to the semantic interpretation step. Semantic query
execution matches relevant texts with the input query, often
expressed as a set of keywords between which exist various
semantic relationships. Given an NLP architecture that deals
with the problem of matching the query with available
documents (such as those available on the Internet), we focus
on segmenting these documents into their grammatically valid
component sentences. A subset of these sentences most
relevant to the input query can then be passed on to the
relationship extraction and sentence construction steps of the
NLG component of the question answering pipeline [4].

D. Link Grammar
 Link Grammar is based upon the existence of rules,
corresponding to lexical entries or grammatical categories,
whereby each rule describes a list of words corresponding to
that rule and a set of defining disjuncts. Disjuncts correspond
to sets of typed connectors that define the valid use of a given
word, and each connector represents either the left or right half
of a grammatical link of a given type. Two directionally
opposite connectors of the same type form a link in a parsed
sentence. For instance, if word A has the connector S+, this
means that A can form an S link to its right; similarly, a word
B with the connector S- can form an S link to its left. Thus, if
A occurs to the left of B in a sentence, the two words can be
connected via an S link [5].

 A sentence refers to a set of tokens (words, punctuation,
and other syntactic structures) that can be connected by
matching up connectors between certain pairs of tokens. The
Link Grammar database maps all common words of a given
language to the connectors that define them.

Link Grammar requires additional constraints beyond the
matching of connectors to be satisfied, specifically the
planarity and connectivity metarules. Planarity means that

links cannot cross; connectivity means that the links and
tokens of a sentence must form a connected graph wherein all
tokens are connected to each other via some path.

1) Link Grammar Database
 The Link Grammar database contains dictionaries across
more than 10 languages. The English database contains
approximately 1,430 distinct word clusters—groups of words
that share the same grammar rules—and 86,863 word forms.
Each dictionary is structured as a hierarchical tree of files; the
“.dict” file maps all common words to their defining connector
expressions, referencing supporting files that contain
additional word clusters. An example cluster, along with its
associated connector expression, is shown in Fig. 3.

2) Why Link Grammar?
Besides Link Grammar, other APIs and grammar rule

dictionaries exist, such as spaCy1 and Universal Dependencies
(UD)2. Both spaCy and UD rely on or are structured as a
dependency grammar, which requires a head-dependent
relationship, i.e. links must be directional; the English Link
Grammar database does not require links to indicate direction,
and thus can be applied to a greater variety of sentential forms
(a sample UD parse with directional links is shown in Fig. 4.).

 More importantly, Link Grammar enables grammar
comprehension without requiring grammatical knowledge to
be hardcoded into software programs as spaCy does, allowing
the Link Grammar database to continually be updated and
enhanced via any manual or automated input (such as a ULL
system) without having to modify the client code. In
considering this independence of Link Grammar from the
programming language in which client architectures are built,
our proposed Loader architecture creates extensive value in
providing the first native Java support for Link Grammar. The
human-readable and editable nature of Link Grammar allows
our grammar induction algorithm to better serve as an XAI
when integrated into the rest of our NLS architecture.

E. Prior Work
 Bayesian text segmentation methods utilize a generative
probabilistic model wherein a document is represented as a set
of topics, each of which imposes a distribution over the
vocabulary. Riedl and Biemann perform best among these
methods; they define a coherence score between pairs of
sentences, and compute a segmentation by finding drops in
coherence scores between pairs of adjacent sentences [6].

 Another notable text segmentation approach is
GRAPHSEG (Glavaš et al., 2016), an unsupervised graph
method, which performs competitively on synthetic datasets
[7]. It is widely known for outperforming Bayesian
approaches on the Manifesto dataset [8]. GRAPHSEG works by
building a graph with sentences as nodes, where an edge
between two nodes signifies that the sentences represented by
those nodes are semantically similar. GRAPHSEG then
computes a segmentation by heuristically finding maximal
cliques of adjacent sentences [9].

 For sentence segmentation specifically, Matusov et al.
proposed a novel sentence segmentation algorithm capable of
detecting sentence-like units (SUs) in a statistical machine
translation (MT) framework [10]. Matusov et. al. built three
different MT systems: a phase-based MT system without
punctuation marks, an MT algorithm with implicit punctuation
mark prediction, and a phrase-based MT system with
punctuation marks. In each of these MT contexts with
different rules for punctuation prediction, the sentence
segmentation algorithm decides segment boundaries based on
a log-linear combination of language model and prosodic
__

1 https://spacy.io/usage/linguistic-features#sbd
2 https://universaldependencies.org/introduction.html

features, and the length of each segment is optimized explicitly
in a manner similar to that of the HMM model [11].

Favre et al. proposed a sentence segmentation system that
solves for sentences in a text via a global classification
problem, where unsuitable segmentations are ruled out based
on their score when tested using a generative syntactic
language model induced by a probabilistic context-free
grammar (PCFG) from a syntactic parser capable of capturing
long distance dependencies and providing the segmentation
algorithm with global syntactic information in a lattice-based
manner [12]. Specifically, the NLS system initially constructs
a hypothesis segmentation using local features via a two-pass
approach involving a word boundary level model based on
prosodic and n-gram features as well as unsupervised domain
adaptation; the candidate sentences are assigned syntactic
language model scores which are combined with local low-
level scores in a log-linear model. These scores are then used
to compute a final segmentation.

Lamprier et al. proposed ClassStruggle, an algorithm for
linear text segmentation on general corpora. ClassStruggle
first creates an initial clustering of the sentences of the text
with respect to their similarities; by computing a similarity
score between pairs of sentences in the form of encoded
vectors via a variant of the “Single Pass” algorithm, the model
classifies sentences into different categories, which provide a
global view on the semantic relationships existing in the text.
Afterwards, the clusters evolve, by considering a notion of
proximity and of layout in the text, in order to create groups
based on contextual and topical commonality. ClassStruggle
then segments the text based on the distribution of the
occurrences of the members of each class, with boundaries
created between sentences of different classes [13].

Recent studies have focused on conditional random field
(CRF), a class of statistical modeling method used for
structured prediction, and neural networks for sentence
segmentation [14]. Wang et al. [15] and Hasan et al. [16] used
CRF based methods to identify word boundaries in speech
corpora datasets. Khomitsevich et al. proposed an architecture
combining two models, one based on support vector machines
to deal with prosodic information and the other based on CRF
to handle lexical information, using a logistic regression
classifier; while this architecture performs very competitively
on speech corpora datasets, it relies on punctuation and other
syntactic structures specific to the Russian language, thus
preventing the algorithm from generalizing to other languages
[17]. Xu et al. proposed a combination of CRF and a deep
neural network (DNN) to identify sentence boundaries on
broadcast news data [18].

II. METHODOLOGY
Our NLS architecture consists of two main classes: Loader

and Segment. Loader, a utility program used by Segment to
load Link Grammar into memory, is not specific to our NLS
architecture but is rather a tool for storing Link Grammar
locally that can be used by any algorithm. Fig. 5. displays our
proposed NLS architecture, containing the workflow of
Loader and Segment as well as the question answering
pipeline into which these two components can be integrated.

A. Loader
Loader loads and stores the Link Grammar database in

various classes for future usage. Specifically, the Dictionary
class stores a list of Word objects; each Word object contains
a unique Rule object; a Rule object contains a list of Disjunct
objects; and each Disjunct object stores a list of connectors
that constitute the legal use of the given word. Currently, the

Loader architecture only supports the English language and
does not handle more complex morphological structures,
including those needed to support languages such as Russian
that require extensive morphology usage.

The MAKEDICT function, which comprises the core of the
Loader, utilizes the information in an array of lines obtained
from the Link Grammar database to create an array of
Dictionary objects that map each common word or phrase that
Link Grammar supports to its associated rule. The basic
structure of the MAKEDICT algorithm can be seen in Fig. 6.

After parsing the contents of the Link Grammar database,
Loader calls MAKEDICT to obtain the Dictionary objects for
use in the Segment class. As shown in Fig. 6., MAKEDICT
extracts a Link Grammar rule from each element of lines,
storing any new macros (single links that define larger
connector expressions) in macros. The algorithm then replaces
each macro within the rule with its expanded expression and
assigns the modified rule to the word it defines.

B. Segment
Given the Dictionaries generated by Loader, the Segment

class computes a segmentation for a string of text by first
extracting the tokens (words and punctuation) from that text
via the PROCESSSENTENCES function and then clustering those
tokens into valid sentences as per the SEGMENT function.

As shown in Fig. 7., the SEGMENT function loops through
the input array tokens and determines if certain subsets of
tokens can form grammatically valid sentences via the
ISVALID and CHECK functions. The CHECK function simply
determines if the first two tokens following arr satisfy initial
checks of the planarity and connectivity metarules (e.g., one
partial connectivity check that CHECK implements involves
ensuring that the first and second tokens after arr are capable
of forming links to the right and left, respectively).

ISVALID determines if arr can form a grammatically valid
sentence via Link Grammar rules by ensuring that every pair
of consecutive words in arr can be connected via links given
in the Dictionary objects created by the Loader. To do so,
ISVALID uses the CONNECTS function, which returns a boolean
value indicating whether its two parameters, the tokens left and
right, can be linked together.

As shown in Fig. 8., CONNECTS determines the lists of rules
leftList and rightList that correspond with left and right, and
then checks if any Disjunct in any Rule in leftList matches with
any Disjunct in any Rule in rightList.

An example segmentation query is as follows:
SEGMENT(“tuna is a fish eagle is a bird dog is a mammal”)
[“Tuna is a fish.”, “Eagle is a bird.”, “Dog is a mammal.”]

III. RESULTS
Our algorithm was tested twice on distinct corpora. We

found that the accuracy of our results was affected primarily
by the issue of grammatical ambiguity, which refers to
situations in which the same word may take on different parts
of speech (such as the word “saw” in its verb and noun forms).
Consider the string of text “dad has a hammer mom has a
hammer”. It would be grammatically appropriate to segment
this text into the two sentences “Dad has a hammer” and
“Mom has a hammer” because the words “hammer” and
“Mom” cannot be connected. However, this is only true for the
noun form of “hammer”; the verb form of “hammer” can
technically be linked to the object “Mom”. The presence of
these grammatically correct yet contextually wrong phrases
decreased our sentence boundary identification accuracy.

Semantic, or word sense, disambiguation—a solution to
the grammatical ambiguity problem—determines which
“sense” or definition of a word is activated by that word’s use
in a particular context; for instance, the word “saw,” when
used in the sentence “The child saw a dog,” will have a
different sense—and thus different Link Grammar rules—than
when used in the sentence “The carpenter is holding a saw.”
Current unsupervised semantic disambiguation methods, such
as Goertzel et al.’s algorithm capable of inferring word senses
and parts of speech from vectors built using a neural language
model as a sentence probability oracle, include dictionary-
based algorithms that utilize knowledge encoded in lexical
resources to learn the senses of words [19]. Implementing one
such method will be part of our future work.

Our algorithm was primarily tested on 88 sentences with
words all part of SingularityNET’s “small world” POC-
English corpus3:

TABLE I. “SMALL WORLD” CORPUS NLS RESULTS

Metric Result
Ground Truth (POC-English Corpus)

Total number of sentences 88

Average sentence length 5.51136

NLS Algorithm Results

Total number of sentences 87

Average sentence length 5.57471

Overall Statistics

Runtime 57 sec

Number of sentences matching exactly 78
Number of sentence boundaries accurately
identified 85/87

Accuracy of boundary identification 0.97701

Fig. 1. Results when tested on SingularityNET’s “small world” corpus.

When tested on an excerpt of Lucy Maud Montgomery’s
“Anne’s House of Dreams” as found in the Gutenberg
Children corpus4, our NLS algorithm performed as follows:

TABLE II. GUTENBERG CORPUS NLS RESULTS

Metric Result
Ground Truth (Gutenberg Corpus)

Total number of sentences 10

Average sentence length 13.2

NLS Algorithm Results

Total number of sentences 11

Average sentence length 13.2

Overall Statistics

Runtime 14 sec

Number of sentences matching exactly 7
Number of sentence boundaries accurately
identified 7/9

Accuracy of boundary identification 0.77778

Fig. 2. Results when tested on “Anne’s House of Dreams.”

We compared our NLS architecture to three widely used
open-source sentence segmentation frameworks: Syntok5,

PragmaticNet6, and DeepSegment7. Syntok computes
segmentations by recognizing “terminal markers,” which are
syntactic structures—such as periods, exclamation marks,
question marks, etc.—that signify sentence boundaries.
PragmaticNet is an unsupervised, opinionated, and
conservative segmentation framework that, similar to Syntok,
segments text into sentences based on punctuation, quotations,
and parentheticals. Both Syntok and PragmaticNet identified
zero boundaries in the text from both the POC-English and
Gutenberg corpora, thereby returning one total sentence for
each corpus and yielding an accuracy of 0%. Since Syntok and
PragmaticNet rely on punctuation and other syntactic
structures for segmentation, they are unable to segment bodies
of text without punctuation. DeepSegment utilizes
bidirectional long short-term memory networks (BiLSTMs) in
a CRF based supervised segmentation model aimed at
segmenting unpunctuated bodies of text into sentences. Even
though it does not rely on punctuation, DeepSegment still
identified only 1 segmentation boundary in the POC-English
corpus and 2 boundaries in the Gutenberg corpus (all of which
were accurate), yielding accuracies of 1.15% and 22.2%,
respectively. Our proposed NLS architecture far exceeds these
baselines and, most importantly, provides accurate support for
unpunctuated bodies of text, thus generalizing to segmentation
tasks across languages with varying syntactic structures.

IV. CONCLUSION
Our NLS architecture can primarily be applied to the

semantic query execution component of the question
answering pipeline; one such scenario is the Aigents Social
Media Intelligence Platform [20]. Currently, the Aigents
framework only handles written text in the form of
oversimplified “pidgin” English; our NLS algorithm can
enable Aigents to support question answering from spoken
audio input transcribed by STT as well as extract information
from crawled web pages to answer such questions and thus
approach general conversational intelligence.

 Another application of our NLS architecture is text
simplification. Text simplification is the process of enhancing
a corpus of human-readable text as to simplify the grammar
and structure of the text while maintaining the original
meaning. For instance, consider the unclear sentence, “Mom
saw Dad, who saw Mom sawing.” This text would be much
simpler if split into the following three sentences: “Mom saw
Dad,” “Dad saw Mom,” and “Mom was sawing.” Our
segmentation algorithm can be extended to perform text
simplification, thereby improving the quality of corpora that
would otherwise contain vocabulary and complex sentence
constructions not easily processed via computational means.

More generally, our architecture can be applied to any
NLP algorithms that operate at the sentential level, including
automatic summarization (shortening a set of data structured
as a body of text via computational means to create a subset,
or summary, of that dataset containing the most important or
relevant information within the original content), entity
extraction (identifying and classifying important elements of a
text into pre-defined categories), and sentiment identification
(extracting emotions and opinions presented in a text).

Our further work will be dedicated to: 1) implementing
semantic disambiguation; and 2) extending the algorithm’s
segmentation capabilities to languages other than English.

V. CODE AVAILABILITY
Our NLS architecture is open-source and available under

the MIT License (a permissive, limited-restriction license) on
GitHub at https://github.com/aigents/aigents-java-nlp.

__

3 http://langlearn.singularitynet.io/data/poc-english/
4 http://langlearn.singularitynet.io/data/cleaned/English/Gutenberg
ChildrenBooks/capital/pg544.txt
5 https://github.com/fnl/syntok
6 https://www.tm-town.com/natural-language-processing
7 https://github.com/notAI-tech/deepsegment

ADDITIONAL FIGURES

Fig. 3. Example word cluster and associated connector expression, as seen in the English Link Grammar database.

Fig. 4. UD parse of “The dog was chased by the cat.”

Fig. 5. NLS architecture and question answering workflow.

Fig. 6. MAKEDICT algorithm.

Fig. 7. SEGMENT algorithm.

Fig. 8. CONNECTS algorithm.

REFERENCES

[1] D. Grinberg, J. Lafferty and D. Sleator, “A Robust Parsing Algorithm

For Link Grammars,” arXiv Computing Research Repository (CoRR),
August 1995.

[2] A. Glushchenko, et al., “Unsupervised Language Learning in
OpenCog,” 11th International Conference on Artificial General
Intelligence, AGI 2018, Prague, Czech Republic, pp. 109–118, July
2018.

[3] D. Sleator and D. Temperley, “Parsing English with a Link Grammar,”
in Proceedings of the Third International Workshop on Parsing
Technologies. Association for Computational Linguistics, pp. 277–292,
1993.

[4] V. Prince and A. Labadié, “Text Segmentation Based on Document
Understanding for Information Retrieval,” in Proceedings of the 12th
International Conference on Applications of Natural Language to
Information Systems. NLDB, pp. 295-304, June 2007.

[5] R. Lian, et. al, “Syntax-Semantic Mapping for General Intelligence:
Language Comprehension as Hypergraph Homomorphism, Language
Generation as Constraint Satisfaction,” International Conference on
Artificial General Intelligence, Springer, Berlin, Heidelberg, pp. 158-
167, December 2012.

[6] M. Riedl and C. Biemann, “Text Segmentation with Topic Models,”
JLCL, vol. 27, January 2012.

[7] G. Glavaš, F. Nanni, and S. P. Ponzetto, “Unsupervised Text
Segmentation Using Semantic Relatedness Graphs,” in Proceedings of
the Fifth Joint Conference on Lexical and Computer Semantics.
Association for Computational Linguistics, Berlin, Germany, pp. 125-
130, August 2016.

[8] P. Lehmann, T. Matthieß, N. Merz, S. Regel, and A. Werner,
“Manifesto Corpus Version 2015-1,” WZB Berlin Social Science
Center, Berlin, Germany, 2015.

[9] O. Koshorek, et al., “Text Segmentation as a Supervised Learning
Task,” arXiv:1803.09337 [cs.CL], March 2018.

[10] E. Matusov, A. Mauser and H. Ney, “Automatic Sentence
Segmentation and Punctuation Prediction for Spoken Language
Translation,” in Proceedings of the International Workshop on Spoken
Language Translation. ISCA, November 2006.

[11] F. J, Och and H. Ney, “A Systematic Comparison Of Various Statistical
Alignment Models,” Computational Linguistics, pp. 19–51, March
2003.

[12] B. Favre, D. Hakkani-Tur, S. Petrov and D. Klein, "Efficient sentence
segmentation using syntactic features,” 2008 IEEE Spoken Language
Technology Workshop, Goa, pp. 77-80, 2008, doi:
10.1109/SLT.2008.4777844.

[13] S. Lamprier, T. Amghar, B. Levrat and F. Saubion, “ClassStruggle: A
Clustering Based Text Segmentation,” in Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC). Association for Computing
Machinery, Seoul, Korea, pp. 600-604, March 2007.

[14] M. Treviso, C. Shulby, and S. Aluísio, “Sentence Segmentation in
Narrative Transcripts from Neuropsychological Tests using Recurrent
Convolutional Neural Networks,” in Proceedings of the 15th
Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers. Association for
Computational Linguistics, Valencia, Spain, pp. 315-325, April 2017.

[15] X. Wang, H. Ng, and K. Sim, “Dynamic Conditional Random Fields
for Joint Sentence Boundary and Punctuation Prediction,” 13th Annual
Conference of the International Speech Communication Association
(INTERSPEECH) 2012, January 2012.

[16] M. Hasan, R. S. Doddipatla, and T. Hain, “Multi-pass Sentence-end
Detection of Lecture Speech,” in Proceedings of the Annual
Conference of the International Speech Communication Association
(INTERSPEECH). INTERSPEECH, pp. 2902-2906, January 2014.

[17] O. Khomitsevich, P. Chistikov, T. Krivosheeva, N. Epimakhova, and I.
Chernykh, “Combining Prosodic and Lexical Classifiers for Two-Pass
Punctuation Detection in a Russian ASR System,” in Proceedings of
the International Conference on Speech and Computer. SPECOM, pp.
161-169, September 2015.

[18] C. Xu, L. Xie, G. Huang, X. Xiao, E. Chng, and H. Li, “A Deep Neural
Network Approach for Sentence Boundary Detection in Broadcast
News,” in Proceedings of the Annual Conference on the International
Speech Communication Association (INTERSPEECH).
INTERSPEECH, pp. 2887-2891, January 2014.

[19] B. Goertzel, A. Suárez-Madrigal, and G. Yu, “Guiding Symbolic
Natural Language Grammar Induction via Transformer-Based
Sequence Probabilities,” arXiv:2005.12533v1 [cs.CL], May 2020.

[20] A. Kolonin, “Personal Analytics for Societies and Businesses: With
Aigents Online Platform,” 2017 International Multi-Conference on
Engineering, Computer and Information Sciences (SIBIRCON),
Novosibirsk, pp. 272-275, September 2017.

