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Abstract— Natural language segmentation (NLS), or text 
segmentation, refers to the process of dividing written text into 
meaningful units. Sentence segmentation, a subfield of text 
segmentation, is the problem of dividing a string of natural 
language text into its component sentences. Current methods of 
sentence segmentation are often either hardcoded—they require 
manual implementation of fixed grammar and segmentation 
rules—or require extensive training on labeled corpora and are 
not explainable—they are “black box” algorithms that cannot 
be understood by humans. In this paper, we present a novel 
explainable sentence segmentation method capable of 
separating bodies of text into grammatically valid sentences 
solely based on the grammatical relationships between 
individual words or tokens. The proposed NLS architecture can 
both automate the input query parsing and semantic query 
execution components of voice-activated question answering 
and information retrieval systems as well as enable automatic 
summarization, entity extraction, sentiment identification, and 
a variety of other natural language processing (NLP) algorithms 
that operate at the sentential level. 

Keywords—explainable artificial intelligence, natural 
language segmentation, natural language processing, question 
answering, formal grammar 

I. INTRODUCTION 

A. Natural Language Segmentation 
Natural language segmentation (NLS), otherwise known 

as text segmentation, refers to the process of dividing written 
text into meaningful units, such as words, sentences, topics, 
morphemes, or paragraphs. Text segmentation encompasses a 
variety of problems, such as word segmentation, intent 
segmentation, topic segmentation, and more; our work is 
concerned with sentence segmentation. 

Sentence segmentation is the problem of dividing a string 
of natural language text into its component sentences. In this 
paper, we refer to sentence segmentation specifically in the 
context of separating bodies of text into grammatically valid 
sentences solely based on the semantic and morphological 
relationships between individual words, i.e. we do not use 
punctuation, capitalization, or other indicators of the 
beginnings or endings of sentences. Our approach is thus 
generalizable to various languages other than English, since 
not all written languages contain punctuation characters useful 
for approximating sentence boundaries. 

B. Sources of Unsegmented Text 
There are two primary sources of unsegmented text on 

which our proposed NLS algorithm can operate: the text 
output from speech-to-text (STT) recognition engines, which 
are often used to preprocess the inputs of question answering 
or chatbot pipelines, and crawled web pages. STT engines 
transcribe audio content and return sequences of tokens, 

excluding delimiters. Thus, our NLS architecture can be used 
to accurately segment the transcribed output into sentences. 
Similarly, web scraping, or webpage crawling, returns raw 
HTML and CSS output; the returned content often does not 
contain proper punctuation, and HTML or CSS tags  are 
usually neither accurate nor consistent sentence boundary 
identifiers. Here, our NLS architecture can be used to segment 
crawled content without requiring the presence of delimiters. 

C. Motivations 
1) Interpretable Natural Language Processing 

 Explainable AI (XAI) refers to artificial intelligence (AI) 
methods whereby both the AI model and its results can be 
reasonably understood by humans. It contrasts with the idea of 
“black box” algorithms where the AI model and its outcome 
cannot be understood even by the developer. Interpretable 
natural language processing (INLP) is an application of the 
XAI concept to natural language processing (NLP); INLP 
allows for the learning of natural language (NL) material, 
comprehension of bodies of text, and generation of textual 
material via logical and transparent methods that rely on 
interpretable models of formal grammars such as Link 
Grammar [1]. Our NLS architecture is expected to serve as an 
INLP method allowing for the interpretable segmentation of 
large bodies of text into grammatically valid sentences. Our 
work provides both explainable results as well as an 
interpretable model for sentence segmentation, since we 
utilize Link Grammar which is an explainable formal 
grammar. 

2) Unsupervised Language Learning 
Deep neural networks (DNNs) and other existing methods 

of grammar learning often rely on substantial supervised 
training on large labeled corpora. However, humans can easily 
and quickly acquire explainable rules of sentence 
comprehension using grammar rules and conversational 
patterns and clearly understand semantic word categories. 
This gives rise to the idea of unsupervised language learning 
(ULL), which allows for the acquisition of grammar from 
unlabeled text corpora computationally and unsupervisedly. In 
ULL systems, an example being OpenCog’s unsupervised 
grammar induction platform, the learned knowledge is stored 
in a human-readable representation [2].  

There exist five primary components that comprise the 
ULL pipeline. First is the text pre-cleaner, which is 
responsible for preprocessing corpora with configurable 
cleanup and normalization options. The cleaned corpora are 
then passed to the sense pre-disambiguator, which determines 
the “senses” or meanings corresponding with each token and 
thereby performs word disambiguation. The text parser then 
parses the sentences of the corpora into tokens; afterwards, a 
grammar learner categorizes words and assigns rules to each 
word based on these parses. Finally, an evaluator measures the 



quality of the inferred grammar. The ULL’s final output is a 
model of the human language; one such model is the Link 
Grammar database itself, which serves as the formal grammar 
utilized by our NLS architecture [3]. If not obtained from a 
ULL system, transparent grammatical models of any NL must 
be created manually by computational linguists and 
periodically maintained as the language develops over time. 

3) Question Answering 
Question answering, a subfield of information retrieval, is 

the problem of automatically answering questions posed by 
humans in the form of NL material via computational means. 
Within an explainable question answering pipeline, there exist 
two primary components: natural language comprehension 
(NLC), and natural language generation (NLG). NLC requires 
first parsing the question, or input query, using a knowledge 
base structured as a formal grammar, and then performing 
semantic interpretation (learning semantic relationships 
between tokens of the parsed query found in the previous 
step). In the context of this paper, we focus on voice-activated 
question answering pipelines, where the input query is 
captured as an audio recording and transcribed via an STT 
engine. The NLG component then involves semantic query 
execution (deriving the answer to the query using the 
relationships extracted during NLC) and sentence construction 
(building grammatically valid sentences from the words and 
relationships determined during query execution). 

Our work is concerned with both parsing the question as 
well as semantic query execution. While parsing the input 
query, our NLS architecture can first separate the token 
sequence that represents the question into its component 
sentences, which can then be used to build a parse tree that is 
passed on to the semantic interpretation step. Semantic query 
execution matches relevant texts with the input query, often 
expressed as a set of keywords between which exist various 
semantic relationships. Given an NLP architecture that deals 
with the problem of matching the query with available 
documents (such as those available on the Internet), we focus 
on segmenting these documents into their grammatically valid 
component sentences. A subset of these sentences most 
relevant to the input query can then be passed on to the 
relationship extraction and sentence construction steps of the 
NLG component of the question answering pipeline [4]. 

D. Link Grammar 
 Link Grammar is based upon the existence of rules, 
corresponding to lexical entries or grammatical categories, 
whereby each rule describes a list of words corresponding to 
that rule and a set of defining disjuncts. Disjuncts correspond 
to sets of typed connectors that define the valid use of a given 
word, and each connector represents either the left or right half 
of a grammatical link of a given type. Two directionally 
opposite connectors of the same type form a link in a parsed 
sentence. For instance, if word A has the connector S+, this 
means that A can form an S link to its right; similarly, a word 
B with the connector S- can form an S link to its left. Thus, if 
A occurs to the left of B in a sentence, the two words can be 
connected via an S link [5]. 

 A sentence refers to a set of tokens (words, punctuation, 
and other syntactic structures) that can be connected by 
matching up connectors between certain pairs of tokens. The 
Link Grammar database maps all common words of a given 
language to the connectors that define them. 

Link Grammar requires additional constraints beyond the 
matching of connectors to be satisfied, specifically the 
planarity and connectivity metarules. Planarity means that 

links cannot cross; connectivity means that the links and 
tokens of a sentence must form a connected graph wherein all 
tokens are connected to each other via some path.  

1) Link Grammar Database 
 The Link Grammar database contains dictionaries across 
more than 10 languages. The English database contains 
approximately 1,430 distinct word clusters—groups of words 
that share the same grammar rules—and 86,863 word forms. 
Each dictionary is structured as a hierarchical tree of files; the 
“.dict” file maps all common words to their defining connector 
expressions, referencing supporting files that contain 
additional word clusters. An example cluster, along with its 
associated connector expression, is shown in Fig. 3. 

2) Why Link Grammar? 
Besides Link Grammar, other APIs and grammar rule 

dictionaries exist, such as spaCy1 and Universal Dependencies 
(UD)2. Both spaCy and UD rely on or are structured as a 
dependency grammar, which requires a head-dependent 
relationship, i.e. links must be directional; the English Link 
Grammar database does not require links to indicate direction, 
and thus can be applied to a greater variety of sentential forms 
(a sample UD parse with directional links is shown in Fig. 4.). 

 More importantly, Link Grammar enables grammar 
comprehension without requiring grammatical knowledge to 
be hardcoded into software programs as spaCy does, allowing 
the Link Grammar database to continually be updated and 
enhanced via any manual or automated input (such as a ULL 
system) without having to modify the client code. In 
considering this independence of Link Grammar from the 
programming language in which client architectures are built, 
our proposed Loader architecture creates extensive value in 
providing the first native Java support for Link Grammar. The 
human-readable and editable nature of Link Grammar allows 
our grammar induction algorithm to better serve as an XAI 
when integrated into the rest of our NLS architecture. 

E. Prior Work 
 Bayesian text segmentation methods utilize a generative 
probabilistic model wherein a document is represented as a set 
of topics, each of which imposes a distribution over the 
vocabulary. Riedl and Biemann perform best among these 
methods; they define a coherence score between pairs of 
sentences, and compute a segmentation by finding drops in 
coherence scores between pairs of adjacent sentences [6].  

        Another notable text segmentation approach is 
GRAPHSEG (Glavaš et al., 2016), an unsupervised graph 
method, which performs competitively on synthetic datasets 
[7]. It is widely known for outperforming Bayesian 
approaches on the Manifesto dataset [8]. GRAPHSEG works by 
building a graph with sentences as nodes, where an edge 
between two nodes signifies that the sentences represented by 
those nodes are semantically similar. GRAPHSEG then 
computes a segmentation by heuristically finding maximal 
cliques of adjacent sentences [9]. 

        For sentence segmentation specifically, Matusov et al. 
proposed a novel sentence segmentation algorithm capable of 
detecting sentence-like units (SUs) in a statistical machine 
translation (MT) framework [10]. Matusov et. al. built three 
different MT systems: a phase-based MT system without 
punctuation marks, an MT algorithm with implicit punctuation 
mark prediction, and a phrase-based MT system with 
punctuation marks. In each of these MT contexts with 
different rules for punctuation prediction, the sentence 
segmentation algorithm decides segment boundaries based on 
a log-linear combination of language model and prosodic 
__________________________________________________________________________________________________ 

1 https://spacy.io/usage/linguistic-features#sbd 
2 https://universaldependencies.org/introduction.html 
 



features, and the length of each segment is optimized explicitly 
in a manner similar to that of the HMM model [11]. 

Favre et al. proposed a sentence segmentation system that 
solves for sentences in a text via a global classification 
problem, where unsuitable segmentations are ruled out based 
on their score when tested using a generative syntactic 
language model induced by a probabilistic context-free 
grammar (PCFG) from a syntactic parser capable of capturing 
long distance dependencies and providing the segmentation 
algorithm with global syntactic information in a lattice-based 
manner [12]. Specifically, the NLS system initially constructs 
a hypothesis segmentation using local features via a two-pass 
approach involving a word boundary level model based on 
prosodic and n-gram features as well as unsupervised domain 
adaptation; the candidate sentences are assigned syntactic 
language model scores which are combined with local low-
level scores in a log-linear model. These scores are then used 
to compute a final segmentation. 

Lamprier et al. proposed ClassStruggle, an algorithm for 
linear text segmentation on general corpora. ClassStruggle 
first creates an initial clustering of the sentences of the text 
with respect to their similarities; by computing a similarity 
score between pairs of sentences in the form of encoded 
vectors via a variant of the “Single Pass” algorithm, the model 
classifies sentences into different categories, which provide a 
global view on the semantic relationships existing in the text. 
Afterwards, the clusters evolve, by considering a notion of 
proximity and of layout in the text, in order to create groups 
based on contextual and topical commonality. ClassStruggle 
then segments the text based on the distribution of the 
occurrences of the members of each class, with boundaries 
created between sentences of different classes [13]. 

Recent studies have focused on conditional random field 
(CRF), a class of statistical modeling method used for 
structured prediction, and neural networks for sentence 
segmentation [14]. Wang et al. [15] and Hasan et al. [16] used 
CRF based methods to identify word boundaries in speech 
corpora datasets. Khomitsevich et al. proposed an architecture 
combining two models, one based on support vector machines 
to deal with prosodic information and the other based on CRF 
to handle lexical information, using a logistic regression 
classifier; while this architecture performs very competitively 
on speech corpora datasets, it relies on punctuation and other 
syntactic structures specific to the Russian language, thus 
preventing the algorithm from generalizing to other languages 
[17]. Xu et al. proposed a combination of CRF and a deep 
neural network (DNN) to identify sentence boundaries on 
broadcast news data [18]. 

II. METHODOLOGY 
Our NLS architecture consists of two main classes: Loader 

and Segment. Loader, a utility program used by Segment to 
load Link Grammar into memory, is not specific to our NLS 
architecture but is rather a tool for storing Link Grammar 
locally that can be used by any algorithm. Fig. 5. displays our 
proposed NLS architecture, containing the workflow of 
Loader and Segment as well as the question answering 
pipeline into which these two components can be integrated.  

A. Loader 
Loader loads and stores the Link Grammar database in 

various classes for future usage. Specifically, the Dictionary 
class stores a list of Word objects; each Word object contains 
a unique Rule object; a Rule object contains a list of Disjunct 
objects; and each Disjunct object stores a list of connectors 
that constitute the legal use of the given word. Currently, the 

Loader architecture only supports the English language and 
does not handle more complex morphological structures, 
including those needed to support languages such as Russian 
that require extensive morphology usage. 

The MAKEDICT function, which comprises the core of the 
Loader, utilizes the information in an array of lines obtained 
from the Link Grammar database to create an array of 
Dictionary objects that map each common word or phrase that 
Link Grammar supports to its associated rule. The basic 
structure of the MAKEDICT algorithm can be seen in Fig. 6.  

After parsing the contents of the Link Grammar database, 
Loader calls MAKEDICT to obtain the Dictionary objects for 
use in the Segment class. As shown in Fig. 6., MAKEDICT 
extracts a Link Grammar rule from each element of lines, 
storing any new macros (single links that define larger 
connector expressions) in macros. The algorithm then replaces 
each macro within the rule with its expanded expression and 
assigns the modified rule to the word it defines. 

B. Segment 
Given the Dictionaries generated by Loader, the Segment 

class computes a segmentation for a string of text by first 
extracting the tokens (words and punctuation) from that text 
via the PROCESSSENTENCES function and then clustering those 
tokens into valid sentences as per the SEGMENT function. 

As shown in Fig. 7., the SEGMENT function loops through 
the input array tokens and determines if certain subsets of 
tokens can form grammatically valid sentences via the 
ISVALID and CHECK functions. The CHECK function simply 
determines if the first two tokens following arr satisfy initial 
checks of the planarity and connectivity metarules (e.g., one 
partial connectivity check that CHECK implements involves 
ensuring that the first and second tokens after arr are capable 
of forming links to the right and left, respectively). 

ISVALID determines if arr can form a grammatically valid 
sentence via Link Grammar rules by ensuring that every pair 
of consecutive words in arr can be connected via links given 
in the Dictionary objects created by the Loader. To do so, 
ISVALID uses the CONNECTS function, which returns a boolean 
value indicating whether its two parameters, the tokens left and 
right, can be linked together. 

As shown in Fig. 8., CONNECTS determines the lists of rules 
leftList and rightList that correspond with left and right, and 
then checks if any Disjunct in any Rule in leftList matches with 
any Disjunct in any Rule in rightList. 

An example segmentation query is as follows: 
SEGMENT(“tuna is a fish eagle is a bird dog is a mammal”) 
[“Tuna is a fish.”, “Eagle is a bird.”, “Dog is a mammal.”] 

III. RESULTS 
Our algorithm was tested twice on distinct corpora. We 

found that the accuracy of our results was affected primarily 
by the issue of grammatical ambiguity, which refers to 
situations in which the same word may take on different parts 
of speech (such as the word “saw” in its verb and noun forms). 
Consider the string of text “dad has a hammer mom has a 
hammer”. It would be grammatically appropriate to segment 
this text into the two sentences “Dad has a hammer” and 
“Mom has a hammer” because the words “hammer” and 
“Mom” cannot be connected. However, this is only true for the 
noun form of “hammer”; the verb form of “hammer” can 
technically be linked to the object “Mom”. The presence of 
these grammatically correct yet contextually wrong phrases 
decreased our sentence boundary identification accuracy. 



Semantic, or word sense, disambiguation—a solution to 
the grammatical ambiguity problem—determines which 
“sense” or definition of a word is activated by that word’s use 
in a particular context; for instance, the word “saw,” when 
used in the sentence “The child saw a dog,” will have a 
different sense—and thus different Link Grammar rules—than 
when used in the sentence “The carpenter is holding a saw.” 
Current unsupervised semantic disambiguation methods, such 
as Goertzel et al.’s algorithm capable of inferring word senses 
and parts of speech from vectors built using a neural language 
model as a sentence probability oracle, include dictionary-
based algorithms that utilize knowledge encoded in lexical 
resources to learn the senses of words [19]. Implementing one 
such method will be part of our future work. 

Our algorithm was primarily tested on 88 sentences with 
words all part of SingularityNET’s “small world” POC-
English corpus3: 

TABLE I.  “SMALL WORLD” CORPUS NLS RESULTS 

Metric Result  
Ground Truth (POC-English Corpus) 

Total number of sentences 88 

Average sentence length  5.51136 

NLS Algorithm Results 

Total number of sentences 87 

Average sentence length 5.57471 

Overall Statistics 

Runtime 57 sec 

Number of sentences matching exactly 78 
Number of sentence boundaries accurately 
identified 85/87 

Accuracy of boundary identification 0.97701 

Fig. 1. Results when tested on SingularityNET’s “small world” corpus. 

When tested on an excerpt of Lucy Maud Montgomery’s 
“Anne’s House of Dreams” as found in the Gutenberg 
Children corpus4, our NLS algorithm performed as follows: 

TABLE II.  GUTENBERG CORPUS NLS RESULTS 

Metric Result  
Ground Truth (Gutenberg Corpus) 

Total number of sentences 10 

Average sentence length  13.2 

NLS Algorithm Results 

Total number of sentences 11 

Average sentence length  13.2 

Overall Statistics 

Runtime 14 sec 

Number of sentences matching exactly 7 
Number of sentence boundaries accurately 
identified 7/9 

Accuracy of boundary identification 0.77778 

Fig. 2. Results when tested on “Anne’s House of Dreams.” 

We compared our NLS architecture to three widely used 
open-source sentence segmentation frameworks: Syntok5, 

PragmaticNet6, and DeepSegment7. Syntok computes 
segmentations by recognizing “terminal markers,” which are 
syntactic structures—such as periods, exclamation marks, 
question marks, etc.—that signify sentence boundaries. 
PragmaticNet is an unsupervised, opinionated, and 
conservative segmentation framework that, similar to Syntok, 
segments text into sentences based on punctuation, quotations, 
and parentheticals. Both Syntok and PragmaticNet identified 
zero boundaries in the text from both the POC-English and 
Gutenberg corpora, thereby returning one total sentence for 
each corpus and yielding an accuracy of 0%. Since Syntok and 
PragmaticNet rely on punctuation and other syntactic 
structures for segmentation, they are unable to segment bodies 
of text without punctuation. DeepSegment utilizes 
bidirectional long short-term memory networks (BiLSTMs) in 
a CRF based supervised segmentation model aimed at 
segmenting unpunctuated bodies of text into sentences. Even 
though it does not rely on punctuation, DeepSegment still 
identified only 1 segmentation boundary in the POC-English 
corpus and 2 boundaries in the Gutenberg corpus (all of which 
were accurate), yielding accuracies of 1.15% and 22.2%, 
respectively. Our proposed NLS architecture far exceeds these 
baselines and, most importantly, provides accurate support for 
unpunctuated bodies of text, thus generalizing to segmentation 
tasks across languages with varying syntactic structures. 

IV. CONCLUSION 
Our NLS architecture can primarily be applied to the 

semantic query execution component of the question 
answering pipeline; one such scenario is the Aigents Social 
Media Intelligence Platform [20]. Currently, the Aigents 
framework only handles written text in the form of  
oversimplified “pidgin” English; our NLS algorithm can 
enable Aigents to support question answering from spoken 
audio input transcribed by STT as well as extract information 
from crawled web pages to answer such questions and thus 
approach general conversational intelligence. 

 Another application of our NLS architecture is text 
simplification. Text simplification is the process of enhancing 
a corpus of human-readable text as to simplify the grammar 
and structure of the text while maintaining the original 
meaning. For instance, consider the unclear sentence, “Mom 
saw Dad, who saw Mom sawing.” This text would be much 
simpler if split into the following three sentences: “Mom saw 
Dad,” “Dad saw Mom,” and “Mom was sawing.” Our 
segmentation algorithm can be extended to perform text 
simplification, thereby improving the quality of corpora that 
would otherwise contain vocabulary and complex sentence 
constructions not easily processed via computational means. 

More generally, our architecture can be applied to any 
NLP algorithms that operate at the sentential level, including 
automatic summarization (shortening a set of data structured 
as a body of text via computational means to create a subset, 
or summary, of that dataset containing the most important or 
relevant information within the original content), entity 
extraction (identifying and classifying important elements of a 
text into pre-defined categories), and sentiment identification 
(extracting emotions and opinions presented in a text). 

Our further work will be dedicated to: 1) implementing 
semantic disambiguation; and 2) extending the algorithm’s 
segmentation capabilities to languages other than English. 

V. CODE AVAILABILITY 
Our NLS architecture is open-source and available under 

the MIT License (a permissive, limited-restriction license) on 
GitHub at https://github.com/aigents/aigents-java-nlp.  

__________________________________________________________________________________________________ 

3 http://langlearn.singularitynet.io/data/poc-english/  
4 http://langlearn.singularitynet.io/data/cleaned/English/Gutenberg 
ChildrenBooks/capital/pg544.txt 
5 https://github.com/fnl/syntok 
6 https://www.tm-town.com/natural-language-processing  
7 https://github.com/notAI-tech/deepsegment 
 



ADDITIONAL FIGURES 
 

 

 

Fig. 3. Example word cluster and associated connector expression, as seen in the English Link Grammar database. 

 

 

Fig. 4. UD parse of “The dog was chased by the cat.” 

 
 

 

 

 

 

 
 
 
 



 
 

 
Fig. 5. NLS architecture and question answering workflow. 

 

 
Fig. 6. MAKEDICT algorithm. 

 

 

 



 

 

 

 
Fig. 7. SEGMENT algorithm. 

 
Fig. 8. CONNECTS algorithm. 
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